Directed peptide amphiphile assembly using aqueous liquid crystal templates in magnetic fields.
نویسندگان
چکیده
An alignment technique based on the combination of magnetic fields and a liquid crystal (LC) template uses the advantages of both approaches: the magnetic fields offer non-contact methods that apply to all sample sizes and shapes, whilst the LC templates offer high susceptibilities. The combination introduces a route to control the spatial organization of materials with low intrinsic susceptibilities. We demonstrate that we can unidirectionally align one such material, peptide amphiphiles in water, on a centimeter scale at a tenfold lower magnetic field by using a lyotropic chromonic liquid crystal as a template. We can transform the aligned supramolecular assemblies into optically active π-conjugated polymers after photopolymerization. Lastly, by reducing the magnetic field strength needed for addressing these assemblies, we are able to create more complex structures by initiating self-assembly of our supramolecular materials under competing alignment forces between the magnetically induced alignment of the assemblies (with a positive diamagnetic anisotropy) and the elastic force dominated alignment of the template (with a negative diamagnetic anisotropy), which is directed orthogonally. Although the approach is still in its infancy and many critical parameters need optimization, we believe that it is a very promising technique to create tailor-made complex structures of (aqueous) functional soft matter.
منابع مشابه
Unexpected role of linker position on ammonium gemini surfactant lyotropic gyroid phase stability.
Arising from the water-driven self-assembly of amphiphiles over generally narrow temperature and composition phase windows, aqueous lyotropic liquid crystal (LLC) network phases are useful in applications as therapeutic delivery vehicles and templates for mesoporous material syntheses. While a clear set of amphiphile design rules that enables access to these intricate three-dimensional structur...
متن کاملBiomimetic synthesis of gold nanocrystals using a reducing amphiphile.
The first synthesis of a chelating and reactive surfactant derived from citric acid and a short silicone as hydrophobic tail is described. Aqueous solutions of this reactive amphiphile spontaneously induce gold ion reduction, particle nucleation, and further direct crystal growth. The process, both pH and light dependent, occurs through lipid-directed assembly of metal ions, their reduction and...
متن کاملIonic liquids as amphiphile self-assembly media.
In recent years, the number of non-aqueous solvents which mediate hydrocarbon-solvent interactions and promote the self-assembly of amphiphiles has been markedly increased by the reporting of over 30 ionic liquids which possess this previously unusual solvent characteristic. This new situation allows a different exploration of the molecular "solvophobic effect" and tests the current understandi...
متن کاملLinker Length-Dependent Control of Gemini Surfactant Aqueous Lyotropic Gyroid Phase Stability.
Network-phase lyotropic liquid crystals (LLCs) derived from the water-directed self-assembly of small molecule amphiphiles comprise a useful class of soft nanomaterials, with wide-ranging applications in structural biology and membrane science. However, few known surfactants enable access to these mesophases over wide temperature and amphiphile concentration phase windows. Recent studies have d...
متن کاملStimuli-responsive hydroxyapatite liquid crystal with macroscopically controllable ordering and magneto-optical functions
Liquid crystals are mostly formed by self-assembly of organic molecules. In contrast, inorganic materials available as liquid crystals are limited. Here we report the development of liquid-crystalline (LC) hydroxyapatite (HAp), which is an environmentally friendly and biocompatible biomineral. Its alignment behavior, magneto-optical properties, and atomic-scale structures are described. We succ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Soft matter
دوره 12 31 شماره
صفحات -
تاریخ انتشار 2016